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Abstract. This paper introduces and describes a manually generated
synchronization ground truth, accurate to the level of the audio sample,
for the Jiku Mobile Video Dataset, a dataset containing hundreds of
videos recorded by mobile users at different events with drama, dancing
and singing performances. It aims at encouraging researchers to evaluate
the performance of their audio, video, or multimodal synchronization
methods on a publicly available dataset, to facilitate easy benchmarking,
and to ease the development of mobile video processing methods like
audio and video quality enhancement, analytics and summary generation
that depend on an accurately synchronized dataset.
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1 Introduction

With the incredibly fast proliferation of mobile devices capable of video record-
ing, it is now easier than ever for people to quickly record interesting moments
at the press of a button. For the research community, this opens up a lot of
new and interesting opportunities. As an example, if you have recently been to
a concert you might have noticed that people are constantly taking pictures and
recording video clips. By the end, a huge dataset distributed over many devices
has been generated by the crowd. Supposed there is a way to access this dataset,
many interesting post processing methods can be applied to it. To name a few,
there is the possibility to detect highlights and key moments by looking at the
frequency of concurrent recordings, since people tend to capture what they con-
sider to be most interesting to them or to friends that they want to show the
capture. Recordings can be temporally stitched together to get a complete and
continuous coverage of the whole event. Even better, vivid videos can be created
by switching between different perspectives or showing different shots side-by-
side. Quality can be improved by picking the best audio and video tracks from
parallel recordings. 3D scenes can be reconstructed from recordings of different
angles. It can even help in forensics, e.g. by reconstructing a crime scene and
calculating where a gunshot came from.



The key to all these applications is precise automatic synchronization, a topic
extensively researched in recent years, aiming to replace the tedious and very
time-consuming manual work [16]. While an experienced user can synchronize
a pair of recordings in a matter of minutes, it still costs him many hours to
synchronize a large dataset. The difficulty of the problem is determined by mul-
tiple dimensions and grows with increasing clip amounts, decreasing clip lengths,
decreasing perceived clip quality, and wider time frames where the clips are scat-
tered in. To synchronize automatically, algorithms usually look at the audio or
video content of the recordings and try to find unique events occurring in multiple
recordings, which are then taken as reference points for aligning the recordings
on a timeline. There are many published methods and algorithms for automatic
synchronization to choose from, but authors usually evaluate them on their own
custom datasets. This makes it impossible to compare them in terms of computa-
tional complexity, spacial complexity, synchronization rate, and synchronization
accuracy.

To mitigate this situation, we contribute an accurate synchronization ground
truth for a large publicly available mobile video dataset, and even consider the
effect of time drift between the recording devices. It can be used to evaluate cur-
rent and future synchronization methods, and serve as a foundation for methods
that build upon synchronized audio and video tracks.

2 Related Work

There are many methods for audio and video synchronization, and a recent over-
view of synchronization methods is presented in [10]. Mathematical formulations
of the synchronization problem can be found in [10,16,19]. There is no publicly
available dataset with a precise synchronization ground truth, and individual
methods are usually evaluated on custom datasets. Shrestha et al. [17] created a
custom dataset captured at two different events by two video cameras, a wedding
in a church and a dance event inside a hall, with a total runtime of 3 hours and
45 minutes. In follow-up works, they first extended the dataset with three addi-
tional events [18], and later extended it with two concert events [16] covered by
9, respectively 10 cameras. Both extensions consisted of short clips of 20 seconds
to 5 minutes length, their total runtime is unknown. Kennedy and Naaman [9]
evaluated their work on a reasonably big dataset sourced from YouTube from
three big music concerts with about 200 videos each and runtimes between 1
and 10 minutes. Shankar et al. [14] used a custom dataset with videos recorded
with mobile and handheld devices at cricket, baseball and football matches, but
they did not describe it more detailed. The most recent work was conducted by
Casanovas and Cavallaro [10], who again extended the dataset from [16] with
additional events. All of these datasets are either too small, not distributable
due to copyright restrictions, out-dated and not available any more, or do not
capture the real-world characteristics of our use-case. If datasets are too small,
they might (un)intentionally mask problems of complexity. If clips are too short
or taken from homogeneous sources, they might mask drift. If the perceptual



quality of clips is too high or they are recorded in lab settings, they might mask
low robustness.

Time drift has been mostly ignored in the multimedia community. The prob-
lem itself is well known and has been covered in network delay measurements [12]
or to identify physical network devices through fingerprinting [15]. In multime-
dia, [10] is the first paper presenting a synchronization method that, to our
knowledge, identifies and acknowledges the time drift problem. We have also
already presented a demo application for media synchronization that can semi-
automatically handle drift [4], and we described a measurement method in [5].

3 Jiku Mobile Video Dataset

The Jiku Mobile Video Dataset [13] is a collection of crowdsourced videos cap-
tured at 5 different events across Singapore by 4 to 15 recording devices in par-
allel, mostly in HD resolution. The events feature drama, dancing and singing
performances. It aims at providing a publicly available collection of videos that
(i) captures the unique characteristics of mobile video, (ii) supports researchers
in working on solutions instead of spending time gathering test data, and (iii)
enables benchmarking by leading to comparability of related methods and algo-
rithms. It is to our knowledge the only currently and publicly available dataset
of this kind, and by far the largest (Table 1) and most recent dataset available
for event synchronization in general. An additional feature is the complemen-
tary metadata of each video recording comprised of compass and accelerometer
readings. Potential applications suggested by the authors are (i) video quality
enhancement by complementing information from multiple concurrent record-
ings from different viewpoints, (ii) audio quality enhancement by improving the
audio track of a video with audio data from other concurrent audio tracks, (iii)
virtual directing by automatically presenting the best shot out of a number of
concurrent recordings to the viewer, and switching between them to create vivid
multi-camera presentations, (iv) occlusion detection to support the selection of
recordings that present the intended view of a scene, (v) video sharing by sim-
ulating events with a multitude of users transmitting their recordings over a
network, and (vi) mobile video analytics including face detection, tracking, seg-
mentation and de-shaking. Almost all of these suggestions rely on concurrent
recordings, which implicates the need of an exact time-based synchronization.
The clips are organized by a naming scheme consisting of an event ID, the date
of the event, the ID of the recording device, and the recording start timestamp.
By looking at the filename, they can be split into the five different event sets,
and further divided into subsets by the recording device ID. The timestamps are
too inaccurate and cannot be used for synchronization, as described in [17].

4 Methodology

This section describes the process of generating the ground truth. The goal was,
for each set of event recordings in the dataset, to (i) lay out all recordings on a



Table 1. Breakdown of the Jiku Mobile Video Dataset. Additional detailed character-
istics can be found in the original paper [13].

Event GT 090912 NAF 160312 NAF 230312 RAF 100812 SAF 290512

Cameras 4 8 15 7 8
Recordings 50 66 117 97 143
Total Length 3h 37m 6h 00m 8h 23m 6h 40m 5h 57m

common timeline and (ii) extract the offset of each recording from the start of the
timeline as the synchronization ground truth. The timeline begins at zero which
equals to the moment the first recording was started, ends at the moment the last
recording was stopped, and covers the whole interval in between. All recordings
are placed such that all moments from the real event captured on recordings are
placed at the same point on the timeline. We chose to synchronize the recordings
by their audio tracks, because (i) it allows higher alignment precision due to
the much higher audio sampling rate compared to the video frame rate, (ii) it
provides humans a compact overview of the time dimension in the form of audio
waveform envelopes which facilitates easy spotting and validation of matching
points, and (iii) most currently existing synchronization algorithms work on
audio data. The omnidirectionality of audio makes it also much easier to detect
overlaps in the time domain than the strict unidirectionality of video, where
cameras could be looking at totally different excerpts of the event scene.

While synchronization on audio tracks automatically leads to synchronized
video tracks, they will not be as accurately synchronized due to the difference
between the speed of sound and speed of light, and the fact that people in a
crowd usually record from different positions with different distances from the
target scene. Given the sound traveling at 340 m/s and neglecting the much
higher speed of light, a difference of 10 meters distance yields a skew of ≈ 30
ms or ≈ 1 video frame at 30 fps. Luckily, time shifts between video tracks are
less likely to be detected by humans, and offsets below the frame rate cannot be
detected at all. In contrast, an audio offset of 30 ms is usually very noticeable.
According to ITU, subjective research has shown that acceptability thresholds
are at about +90 ms to −185 ms [7]. The ATSC found this numbers inadequate
and recommends to stay within +15 ms and −45 ms [1]. In either case, switching
between video streams that are out of sync will not always go undetected.

To generate the ground truth and lay out all recordings on the timeline,
synchronization points between overlapping recordings had to be found, where
a synchronization point is a quadruple consisting of two recordings and two
time points that specify where the content in one recording equals the con-
tent in another recording. Given such a point, one recording can be adjusted
to the other on the timeline such that the two time points are placed on the
same time instant, which can be seen as a direct synchronization. An indirect
synchronization involves intermediate recordings, such that two non-overlapping
recordings A and B can be synchronized when recording A overlaps X and X



overlaps B, resulting in a synchronization of A, X, and B. It is not necessary
to find synchronization points between all pairs of overlapping recordings, just
between as many as are needed for a minimum spanning tree to be built from
synchronization points interpreted as edges and recordings as nodes. One such
tree then represents a cluster of directly and indirectly overlapping recordings.
In the case of coverage gaps where an event is not continuously captured on
recordings, multiple unconnected trees are formed. Care must be taken that a
synchronization point between two tracks does not automatically lead to the
tracks being synchronized over time, it only assures that the content of the two
tracks conforms at the exact time points. To synchronize them over time and
thus facilitate flawless parallel playback, the drift between the recordings must
be detected and eliminated.

4.1 Time Drift Correction

To get our ground truth as precise as possible, we determined the absolute drifts
in the Jiku dataset. We did this with the help of the Jiku authors [13] who pro-
vided us a mapping of device IDs to recording devices. We gathered devices of
the same models and measured their absolute drift at a room temperature of
≈ 25 ◦C with the same method that we described in [5]. Table 2 lists the record-
ing devices, their dataset IDs and the measured drifts in milliseconds per minute.
A positive drift indicates that the real sampling rate of a device is higher than
the nominal sampling rate, making the playback time longer than the captured
real-time event when played back at the nominal sampling rate. Knowing these
drifts, it is now sufficient to synchronize two overlapping recordings at one single
point to get them synchronized over their whole overlapping interval. There is
still a small fraction of drift error left, resulting from the fact that we did not
measure the exact same devices that were used for recording and we do not know
the temperatures at which the recordings took place. Series of measurement in
our laboratory have shown a standard drift deviation of ≈ 0.1 ms/min between
multiple devices of the same model, and temperature changes between −20 ◦C
and +50 ◦C have shown a variance of ≈ 1 ms/min [5], which we assume to also be
true for the ones used in the dataset. In our opinion, both of these errors left in
the measurements do not have a reasonable impact on our ground truth because
(i) the temperature difference between our laboratory and the actual air tem-
perature at recording time in Singapore is presumably much lower than between
the extreme bounds in our laboratory measurements and (ii) the recordings in
the dataset are short enough to minimize its impact. Out of the 481 recordings
in the dataset, only 19 are longer than 15 minutes, and more than 75% stay
below 5 minutes runtime.

4.2 Manual Synchronization

The manual synchronization was done by an author of this paper who has a lot
of experience in multi-track recording and post-production of audio and video



Table 2. Measured absolute drifts in ms/min of the recording devices used to create
the Jiku Mobile Video Dataset.

Device IDs Drift

Samsung GT-i9023 Nexus S 15, 16, 19, 20 −0.37
Samsung GT-i9000 Galaxy S 5 +0.26
Samsung GT-i9100 Galaxy S II 2, 3, 4, 11, 12, 13, 14, 17, 18, 21, 23 +15.95
Samsung GT-i9250 Galaxy Nexus 0, 1, 6, 7, 8, 9, 10 +4.78
Samsung GT-i9300 Galaxy S III 22 +0.34

data and has had the pleasure to synchronize tracks on many occasions. Do-
ing this manually, especially when many tracks need to be synchronized, takes
a lot of time and effort. This is why automatic methods are sought after, but
both available in the research domain and on the commercial market have not
been used by intention since it would contradict the intended purpose of the
ground truth. To give the manual process a starting boost, we still applied two
automatic approaches to get a rough timeline pre-alignment to start with, but
every synchronization point in the final result has been set and verified by hand.
The first approach was generating an approximate timeline alignment from the
metadata timestamps for all 481 recorded clips. This helped to get a very rough
overview of the alignment of recordings and to spot extreme outliers. At this
point, almost all recordings were off of their final alignment. The second ap-
proach was the application of an audio fingerprinting algorithm [6] that helped
to obtain approximate synchronization points for about 50% of all recordings,
which specifically helped in those cases where the timestamps were off by a huge
amount. The manual work began with the validation and correction of wrong
pre-alignments by looking at the waveform amplitude envelopes, trying to find
visually matching patterns and listening to the recordings to semantically match
them by their content, until all recordings were approximately synchronized. At
this stage, the synchronization between recordings was accurate to a few sec-
onds only. Then followed a time consuming manual refinement process, where
397 exact synchronization points were determined by visually looking at the
waveforms, aurally listening to the audio data, and fine adjusting their relative
offsets until the alignments were as precise as possible, often at sample or even
subsample level. It was always followed by a validation step where the overlap-
ping interval was proof-listened. The difficulty of determining a synchronization
point varied from easy cases where the signals could be visually matched very
clearly to hard cases with extremely distorted signals where only aural matching
by repeated careful listening and readjusting was possible. All of this work was
done in a custom software specifically developed for synchronization purposes.
It took about 20 hours and was approximately cut in half by the automatic
pre-alignment. The final result was a list of synchronization points which we
transformed into a list of time offsets resulting in the manual ground truth.
The timestamps were used as reference to order unconnected clusters of over-



lapping track groups in time, because this information cannot be inferred from
the synchronization points alone.

5 Synchronization Ground Truth

The synchronization ground truth contains, for each of the five events, the start
times of all recordings ordered on a timeline, the drift correction factors, and
all manually generated synchronization points. Laying out all recordings on a
timeline with the specified offsets and changing their runtime by the drift factor
results in a synchronized event. The start times are relative to the start time of
the first recording at the corresponding event, which is assumed w.l.o.g. as zero,
and are calculated from the synchronization points. All specified times are given
to a fractional seconds precision of 10−7 to enable subsample accuracy. Since
all synchronization points have been generated and validated manually, they are
very precise on one hand, probably more precise than current algorithms are
able to achieve, but on the other hand this means that their precision cannot be
measured in numbers. It is guaranteed though, that almost all synchronization
points are inexact to at most 10 ms, where most are more precise and only a
very small part of very hard to determine synchronization points are off by more.
These are cases where humans and also computer algorithms probably reach their
current limits. All synchronization points are guaranteed to be exact enough for
artifacts of nonsynchronous playback, like echoes, to be unperceivable. It is not
guaranteed that video frames of concurrent recordings are in sync, because of
the already mentioned difference between the speed of sound and speed of light.
We had to exclude all recordings from device 5 in the NAF 230312 set because
they were not correctly cut, resulting in multiple noncontinuous shots inside its
files that rendered them unsynchronizable. The data is available for download
on our website1 in structured XML files.

5.1 Accuracy

To evaluate the accuracy of our manually generated synchronization points, we
chose to cross-correlate short intervals of audio samples that surround the points.
The idea was that a low cross-correlation offset with a high correlation coeffi-
cient would confirm a synchronization point valid, while a high offset would be
an indicator that the manually set synchronization point is inaccurate and can
even be improved by the offset. Cross-correlation in general is a computation-
ally expensive operation, but a 1-second interval sufficed because we knew for
sure that all potential manual synchronization errors are much smaller, since
e.g. an error of 50 ms would stand out heavily and cannot go undetected dur-
ing validation. It turned out that the correlation results could not be used to
automatically classify the manual synchronization points into true and false pos-
itives because we were unable to set a reasonable threshold. A problem is that
1 http://www-itec.aau.at/˜maguggen/jikusync/

http://www-itec.aau.at/~maguggen/jikusync/


we do not know the maximum achievable correlation coefficient between pairs of
recordings, due to noise, the different frequency pickup patterns of the recording
devices, and the time drift error. Upon inspection of the results, we found a lot
of cases where the correlation offset was rated with a high coefficient but was
actually too far off the optimal synchronization point, leading to audible echoes
when listened to carefully. In contrast, we had many cases of valid offsets with
much lower coefficients. Experiments with different interval lengths, sampling
rates, and frequency filtering did not have any significant impact on the results.
We could still learn a lot about the ground truth by manually analyzing the
results. Looking at Figure 1, we can see that 200 of the 397 synchronization
points result in a cross-correlation offset within ±5 ms, and 274 are within ±10
ms. This means that in all these cases, our manually generated synchronization
points correlate highly with those calculated by the cross-correlation, confirming
the accuracy of our manually generated data. All other cross-correlation results
were manually double-checked and found to be more inaccurate compared to the
manually identified points. The extreme cases where the cross-correlation offsets
lied within the three-digit range happed in very noisy audio tracks where the
correlation series are flat and the maximum correlation coefficients not located
at distinct peaks, leading to ambiguous results.

5.2 Comparison

To show that the timestamps of the dataset are not reliable enough to be used
for synchronization, we compared our ground truth with the timestamps. We
measured the time difference of each recording as the error between the ideal
position in the event timeline from the ground truth and the position from
the timestamp-based synchronization. The distribution of the offsets is shown
in Figure 2, which clearly indicates that a timestamp-based synchronization
approach is not suitable to be taken as a ground truth because even half a
second offset between two concurrent recordings causes a heavily noticeable lag
in the audio and video tracks, and larger lags make it often even impossible to
perceive two recordings as concurrent. The majority of offsets is greater than
one second, and the manually generated ground truth is therefore essential for
the development and evaluation of synchronization-dependent methods. A few
clips had enormous offsets because the clocks of the recording devices were not
set correctly, resulting in timestamps years behind (around January 2000).

5.3 Evaluation

To demonstrate the usefulness of our ground truth, we chose to evaluate the
synchronization performance of the well known audio fingerprinting algorithm
by Haitsma and Kalker [6] by measuring the preciseness of the calculated syn-
chronization points. This method has been shown to be a promising method for
media synchronization in [16] and [3], and we had it already implemented in our
own synchronization tool. We applied it with the default parameters as described
in the original paper on each of the five events in the Jiku dataset, which yielded



0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0 ∞

0

50

100

150

200

250

Offset (ms)

Fr
eq

u
en

cy

Fig. 1. Distribution of the calculated
cross-correlation offsets from the manu-
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Fig. 2. Distribution of the error offsets
between the timestamp synchronization
and the synchronization ground truth.

2020 synchronization points in total. Figure 3 shows a histogram distribution of
their offsets from the ground truth, binned in steps of 5 milliseconds. Most of the
synchronization points are within the range of ±50 ms; 140 are outside the 100 ms
range of which most are false positives that are off by many minutes and connect
completely unrelated clips. The 95% confidence interval of the mean is between
21.2 ms and 22.8 ms. To test our hypothesis that cross-correlation might improve
synchronization results, we applied it on all synchronization points by correlating
1-second audio signal excerpts centered around the positions they point to. This
post-processing step improved the fingerprinting results significantly by shifting
them towards smaller offsets and almost tripling the synchronization points in
the range of ±5 ms. The 95% confidence interval of the mean moved down to
10.2 ms-11.4 ms. The improved results are also shown in Figure 3 for comparison.
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Fig. 3. Histogram distribution of the offsets to the ground truth of all synchronization
points as found by the fingerprinting approach (blue), and additionally post-processed
by cross-correlation (green).



The overall synchronization rate of the algorithm, which is the number of
clips that are covered by the calculated synchronization points, can also be de-
termined with the help of the ground truth. For this, we compared the optimal
minimum spanning trees of the overlapping event recordings generated from the
ground truth with the minimum spanning trees generated from the computed
synchronization points. Table 3 contains for each dataset the number of edges in
the optimal MST, the number of determined MST edges by fingerprinting, and
the resulting synchronization rate. It shows that this fingerprinting method does
not yield satisfying results, owed to the real-life characteristics of the dataset
that place high demands on the robustness of synchronization methods due to
the uncontrolled environment and heterogeneous sources. There are many heav-
ily distorted audio tracks due to background noise, heavy compression, and poor
built-in microphones or analog-to-digital converters that cannot cope with high
sound pressure levels like they usually occur at such live events.

Just like we demonstrated the determination of the overall synchronization
rate and the individual improvements gained by cross-correlation, our ground
truth can be used for the evaluation and comparison of all methods presented
in Section 2, where some are expected to perform better. For the fingerprinting
method that we evaluated, there are also a few iterative improvements proposed
in [8], [2] and [11], which could also be objectively evaluated.

Table 3. Synchronization rate of the fingerprinting method on the Jiku events showing
the optimal number of MST edges in the ground truth (MSTGT), the achieved number
through fingerprinting (MSTFP), and the rate in percent.

Event GT 090912 NAF 160312 NAF 230312 RAF 100812 SAF 290512

MSTGT 44 63 106 82 102
MSTFP 23 54 73 15 78
Rate 52% 86% 69% 18% 76%

6 Conclusion

This paper presents an audio based manually generated and validated synchro-
nization ground truth for the Jiku Mobile Video Dataset. It cleans the dataset
from time drift and extends the timestamps in the dataset to a much higher
precision. It aims at researchers who want to evaluate or benchmark synchro-
nization algorithms, researchers who develop methods that rely on a synchro-
nized dataset, and demonstrates through an exemplary evaluation experiment
how helpful the ground truth can be.

To further improve the dataset, interesting future work could be the de-
termination of the audio to video track offsets to make audio and video data
perfectly synchronized at the same time. User studies to determine detectability
and acceptability thresholds of offsets between parallel audio tracks are needed to



assess the maximum acceptable error offset. Other interesting future work could
include the evaluation of different synchronization algorithms on this ground
truth to determine the best fit for the evergrowing use-case of crowd sourced
mobile video.
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