
ClockDrift: A Mobile Application for
Measuring Drift in Multimedia Devices

Mario Guggenberger
mg@itec.aau.at

Mathias Lux
mlux@itec.aau.at

Laszlo Böszörmenyi
lb@itec.aau.at

Institute of Information Technology
Alpen-Adria-Universität Klagenfurt

9020 Klagenfurt am Wörthersee, Austria

ABSTRACT
Parallel recordings made at the same event with different
devices, e.g. by visitors of a concert, contain semantically
the same content but do not run at the same speed when
played back in parallel on a computer, which makes their
synchronization difficult. This effect, time drift, concerns all
current consumer multimedia recording devices and results
from their internal clocks not running at the same speed,
leading to deviations from their nominal sampling rates. We
present a mobile application capable of conducting instant
measurements of this time drift, thus helping in determin-
ing devices that go well together, or correcting the speed
differences in post processing.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Audio input/output ; H.5.5
[Information Interfaces and Presentation]: Sound and
Music Computing—Signal analysis, synthesis, and process-
ing

Keywords
Audio, recording, clock drift, time drift, synchronization

1. INTRODUCTION
Electronic devices like smartphones, tablets, audio record-

ers and video cameras are usually based on complex elec-
tronic circuits, whose actions are coordinated by clock sig-
nals. These signals are generated by crystal oscillators, which
usually do not exactly run at their specified nominal fre-
quency, but deviate a little bit and are also prone to environ-
mental influences. This means that a clock signal oscillating
at 1 Hz nominal frequency will in reality, when measured in
UTC time, oscillate at a rate of 1 + ε Hz, where the error,
called drift, is usually very small but measurable. Since the
audio codec’s sample rate and the video codec’s frame rate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
MM’14, November 3–7, 2014, Orlando, Florida, USA.
ACM 978-1-4503-3063-3/14/11.
http://dx.doi.org/10.1145/2647868.2654886.

(a) Main menu (b) Analysis screen

Figure 1: The main screens in our app: (a) contains
the main functions, (b) shows the drift in ms/min
(can be switched to ppm, ms/h, s/h, frequency and
percentage by tapping), the zero-crossing distances
in green and the measurement progress chart on the
bottom.

are derived from this signal, they are also influenced by the
drift. This leads to playback and recording processes being
carried out slightly off their nominal rates (like e.g. specified
in the file header) and results in stretched or reduced nomi-
nal run times, whose deviation we call time drift. This devi-
ation leads to problems when synchronizing parallel record-
ings made with different devices at the same event, e.g. at a
music concert. When comparing the recordings side by side,
one can often notice that their speeds do not match perfectly
and they, when synchronized at some point, will drift apart
and not stay in sync during their whole length. Depending
on the drift rate, it becomes noticeable to humans after some
hours in the best case, and after a few minutes in the worst
case. This concerns recordings from uncontrolled environ-
ments, e.g. crowd sourced videos from music concerts, as
well as coordinated productions by amateurs. A very basic
example for an amateur production is a recording of a talk or
interview with a video camera and a separate audio record-



ing from a high quality voice recorder, and adding a second
camera perspective or an additional audio recording of the
interviewer or audience only makes the problem worse. Due
to cost, many amateurs do not have any alternatives but
using unsynchronized consumer/prosumer equipment which
is susceptible to the drift problem. In highly professional
environments, devices are usually fed by a common master
clock signal at recording time to avoid this problem. In the
scientific multimedia community, we could only find one re-
cent paper addressing the problem [1] and none proposing a
solution. In this demo, we are going to focus on the audio
sampling rate drift and present a mobile application specif-
ically made to quickly measure the drift rate in multimedia
devices.

2. TIME DRIFT
Clock drift leads to deviations in the audio playback and

recording sample rates in devices, which result in pitch shifts
in, and bandwidth changes of the transmitted signals, but
also impact the run times of played or recorded files. This
change of run time is what we call the time drift. While
drift in oscillators is commonly specified in parts per million
(ppm), we specify it in milliseconds per minute (ms/min)
for more intuitive understanding.

To measure the relative drift between two devices A and
B, we play back a sine wave with a nominal frequency fn
on device A, and record it with device B. We then measure
the frequency fr in the recorded data and use it to calcu-
late the total drift factor dt = fn/fr. In case of drift, fr is
slightly off fn and therefore the factor slightly off 1. This
kind of measurement is sufficient to compensate the drift
in recordings made with two or more devices by measuring
all devices from one reference playback device and resam-
pling or stretching the recordings according to the calcu-
lated drift factor. Measuring the absolute drift of a device
off UTC time requires a calibrated measurement device, e.g
a high-precision spectrum analyzer. Again, the device to be
measured plays back a sine wave at fn Hz and the playback
drift factor dp = fn/fp can be determined through the mea-
sured frequency output fp from the playback device. Since
the hardware audio codec of a device C derives the playback
sample rate from the same clock signal as the recording sam-
ple rate, we can assume that both sample rates are the same,
thus both drift factors are equal and therefore dCp ≡ dCr .

Table 1 lists measurements of several different devices.
It is important to note that the measured values are not
absolute constants since temperature has measurable influ-
ence on the drift, and there is a variance between devices of
the same model. Exemplary measurements of different de-
vices have shown a variance of ≈ 1 ms/min between −20 ◦C
and +50 ◦C in temperature, and a standard deviation of
≈ 0.1 ms/min between five LG Nexus 5 and eight Asus
Nexus 7 devices. These values clearly show that there are
huge differences between different devices, which make cer-
tain multimedia use cases, e.g. the synchronization of paral-
lel and overlapping recordings of events, a non-trivial task.

3. CLOCKDRIFT APP
Our app is available for free through the Google Play

Store1. Its two fundamental functions are to (i) act as a
playback source by playing out a test signal, and to (ii) act

1http://www-itec.aau.at/~maguggen/clockdrift/

Table 1: Measured drifts of various multimedia
recording devices in ms/min.
Device Type Drift
Acer Iconia A200 Tablet 0.8
Apple iPad 2 Wi-Fi Tablet 0.8
Apple iPod touch 4G Media Player 25.0
Asus Nexus 7 2012 Wi-Fi Tablet 0.2
LG Nexus 4 Smartphone 0.4
Samsung Galaxy Note 10.1 Tablet 1.0
Samsung Galaxy S II Smartphone 16.4
Samsung Galaxy Spica Smartphone -0.9

as a recording target that analyzes the incoming signal on
the fly and displays the measured drift to the user. The main
screens are shown in Figure 1. A measurement works by
playing a sine wave at the source and isolating it at the tar-
get from the incoming signal with a narrow band-pass filter
centered around the chosen frequency, which can be freely
adjusted by the user up into the imperceptible ultrasonic
band. The filtered signal then gets further processed by
measuring the distances between consecutive zero-crossings
of the waveform and averaging them over time, resulting in
a precise frequency measurement that can be transformed to
a drift reading. The distances are calculated to sub-sample
precision by linearly interpolating the zero-crossing points
from their neighboring sample values, which almost instantly
leads to a precise drift rate determination. The measure-
ment is further improved by determining the strength of the
incoming signal and only measuring while its energy is suffi-
cient, else the analysis gets paused and a hint shown to the
user. The measurements can be stored locally on the device.
This data also contains additional device metadata, which
can, together with the measurement data, be submitted to
our server with the goal to build a database of device drift
indicators. A detailed user guide explaining all the app’s
functionality is available online1.

4. CONCLUSION
We presented a method to measure the clock drift or time

drift in multimedia devices capable of audio playback or
recording, and described our Android app specifically de-
veloped for the purpose of quick on-the-go measurements of
the drift. We have shown that common, often used devices
like smartphones can suffer from enormous drift that makes
the synchronization of even short recordings with a few min-
utes length impossible without further post-processing. In
possible future work we will take a look specifically at video
recording, which in a minority of devices seems to depend
on another clock source and leads to different measurement
results compared to audio only recordings.

5. ACKNOWLEDGMENTS
This work was supported by Lakeside Labs GmbH, Kla-

genfurt, Austria, and funding from the European Regional
Development Fund (ERDF) and the Carinthian Economic
Promotion Fund (KWF) under grant 20214/22573/33955.

6. REFERENCES
[1] A. L. Casanovas and A. Cavallaro. Audio-visual events

for multi-camera synchronization. Multimedia Tools and
Applications, March 2014.

http://www-itec.aau.at/~maguggen/clockdrift/

	Introduction
	Time Drift
	ClockDrift App
	Conclusion
	Acknowledgments
	References

