
Aurio: Audio Processing, Analysis and Retrieval

Mario Guggenberger
Institute of Information Technology
Alpen-Adria-Universität Klagenfurt

9020 Klagenfurt am Wörthersee, Austria
mg@itec.aau.at

ABSTRACT
Aurio is an open source software library written for audio-
based processing, analysis, and retrieval of audio and video
recordings. The novelty of this library is the implementation
of a number of fingerprinting and time warping algorithms
to retrieve, match and synchronize media streams, which no
other library currently offers. It is designed with simplicity,
performance and versatility in mind, can be easily integrated
into .NET applications, and offers a collection of many ba-
sic signal processing methods. It can read many file for-
mats, offers multiple export abilities for further processing,
and contains various UI widgets for graphical applications.
Built upon the Aurio library, AudioAlign is an additionally
released open source application for the (semi-)automatic
synchronization of media recordings.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—re-
usable libraries; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing

Keywords
Audio, features, fingerprinting, dynamic time warping, syn-
chronization, retrieval, processing, open source software

1. INTRODUCTION
The widespread usage of portable and ubiquitous multi-

media capable devices that allow easy recording and thus
creation of new content has led to an abundance of media
recordings that are either kept in the local archives of users
or shared across various online platforms. The big question
is how all these files can be managed, and while this can
be manually done if an archive is small, it gets tedious or
even overwhelming when it grows. This is an area where the
multimedia retrieval community is actively researching for
new helpful tools and methods, and many tools and methods
with high impact have been proposed in recent years.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MM’15, October 26–30, 2015, Brisbane, Australia.
c© 2015 ACM. ISBN 978-1-4503-3459-4/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2733373.2807408.

For audio content management, the probably most helpful
tool is fingerprinting [3], enabling music discovery tools that
tell which song is playing on the radio [23], improving music
library management through metadata retrieval [22] and du-
plicate detection, and helping content creators with broad-
cast monitoring. Researchers have also shown its use for
the synchronization of multiple media recordings captured
at an event [17,19]. Another older but nonetheless interest-
ing invention is dynamic time warping [20] for the nonlinear
alignment of data series, that can be used to synchronize
different song interpretations [4] or to follow scores [1].
We think that these two methods fit well together, and

that there is a lack of easy to use libraries that implement
these methods. We therefore present Aurio, an audio library
that implements these methods and makes them easily ac-
cessible, on top of a collection of basic reusable building
blocks that allow for rapid experimentation, prototyping and
implementation of additional high-level features and meth-
ods.

2. ARCHITECTURE
Aurio1 is a library written in C# for the .NET Framework,

and designed with simplicity, performance, and versatility in
mind. Due to the nature of managed .NET code, this library
cannot be as effective as purely native code, but critical
sections are implemented in unsafe code to minimize the
impact and overhead of the managed runtime.
The core module Aurio contains classes for file I/O, 32-bit

floating point block-based stream processing, audio play-
back, various data structures, utility functions, FFT, re-
sampling, audio features, and various audio matching algo-
rithms, described in more detail in Section 3. Aurio comes
with a few additional modules that are essentially inter-
faces to 3rd party native libraries that it makes use of. Au-
rio.FFmpeg handles file input and support of various audio
and video (container) formats through the well-known FFm-
peg2 library. Aurio.PFFFT interfaces with the PFFFT3

library for FFT calculation, and there is optional support
for the FFTW library [10] through Aurio.FFTW and the
purely managed Exocortex.DSP library4. For resampling,
Aurio uses the Sox Resampler5 through Aurio.Soxr by de-
fault, while libsamplerate6 is optionally available through
1https://github.com/protyposis/Aurio
2http://ffmpeg.org/
3https://bitbucket.org/jpommier/pffft
4http://exocortex.org/dsp/
5http://sourceforge.net/p/soxr/
6http://www.mega-nerd.com/SRC/

https://github.com/protyposis/Aurio
http://ffmpeg.org/
https://bitbucket.org/jpommier/pffft
http://exocortex.org/dsp/
http://sourceforge.net/p/soxr/
http://www.mega-nerd.com/SRC/

Aurio.LibSampleRate. Reading and writing of wave files,
and audio playback is handled through NAudio7. The op-
tional module Aurio.WaveControls depends on Aurio and
provides multiple audio-related UI widgets.
Although written for Windows, it should be portable to

the Mono framework8 for use on other OS’ like Linux, OS X
and possibly Android for which almost all external depen-
dencies are available. The two exceptions are the optional
UI widget module based on the Windows Presentation Foun-
dation API and the audio playback functionality using the
NAudio library, which are both Windows-only. The library
supports x86 and x64 architectures and automatically loads
the appropriate native dependencies.

3. FEATURES
The stream-based audio processing engine in Aurio works

similar to conventional I/O stream implementations in Java
and .NET. All available streams implement a common in-
terface and can be chained together to achieve certain goals,
through which complex processing can be achieved very eas-
ily and logically. A chain of streams must start with a source
where audio data is initially read from, continue with inter-
mediate processing or analysis streams, and optionally end
in a sink stream where the final data is written to. Cur-
rently supported sources are wave files through NAudio,
various file formats through FFmpeg, raw memory, and a
sine generator. Intermediate streams are available for con-
catenation of multiple streams, cropping of start and end
positions, (double) buffering, data monitoring (e.g. for on-
line calculation of spectrograms and correlations), mixing
multiple input streams into one output stream, mono down-
and up-conversion, time offsetting, phase inversion, resam-
pling, time warping for nonlinear time stretching, visualiza-
tion with seamless zooming, and volume clipping, meter-
ing, balancing and leveling. All higher level features and
algorithms in Aurio build upon this interface and require a
stream as input, and all streams and features check the for-
mat of its input stream and reject it with an exception and
a meaningful message in case it is not supported.
Conversion from the time into the frequency domain can

be achieved through one of the FFT implementations, for
which multiple utility functions for magnitude calculation,
normalization and scale conversion are available. The li-
brary also provides all commonly used window functions,
and a class for automatic sequential windowing of sample
streams. Based on the windowing are implementations for
calculating spectrograms with the short-time Fourier trans-
form (STFT), calculating chromagrams [2], and the Contin-
uous Frequency Activation feature [21] for music detection.
The included data structures are commonly used buffers,

moving average calculation methods, a undirected graph
implementation with minimal spanning tree and connected
component calculation, and various memory efficient matrix
representations including the diagonal matrix and two kinds
of sparse matrices.

3.1 Fingerprinting and Matching
The key features of Aurio that distinguish the library from

other audio processing and retrieval libraries are the finger-
printing and matching methods.
7http://naudio.codeplex.com/
8http://www.mono-project.com/

Fingerprinting systems all share the same basic idea of
transforming a stream of audio samples from known tracks
into a series of hashes that are stored in a hash table and
later used for lookup operations with hashes from unknown
tracks [3]. The differences lie in the way the hashes are
calculated and matched, but even there, many ideas are
shared. Four fingerprinting methods are currently imple-
mented. The first one is a well-known and widely used
method usually referred to as "Philips fingerprinting", de-
veloped by Haitsma and Kalker at Philips Research [15].
Hashes are calculated by simply detecting onsets in the spec-
trogram and mapping them to a 32-bit integer bitmap, which
proved to be working very well with noisy data. The sec-
ond is probably the most famous algorithm by Wang be-
cause of its use in the popular smartphone app Shazam,
therefore usually referred to as the "Shazam algorithm" [23].
Compared to the first method, Wang uses an intelligent ap-
proach to achieve a reduced number of more sparsely dis-
tributed hashes with greater entropy by selecting only the
most prominent peaks that most likely survive high noise
("constellation map"), and forming pairs between each peak
and the peaks in a defined target zone. The hashes are
a concatenation of the two frequency bin indices and the
temporal distance of a pair’s peaks, resulting in 24-bit data
stored in a 32-bit integer. Tests have shown even better re-
silience to noise than the Philips approach. A more recent
method is Echoprint by Ellis et al. [8], built for The Echo
Nest corporation that has been acquired by Spotify. It dif-
ferentiates itself from Wang’s method by first whitening the
stream, then splitting the spectrum into 8 sub-bands, and
detecting peaks and forming peak pairs separately in each
band. Hashes are formed from the distances between two
consecutive pairs’ peaks and their band index, truncated
to 20 bits but stored in 32-bit integers. Their distribution
is even sparser with an average distance of one second be-
tween peaks. Its original application is music identification
with over-the-air support, but compared to the previous two
methods it does not work very well with high noise. The
fourth method is named Chromaprint [18] and is based on
ideas from [2, 16]. Chromaprint computes a chromagram,
smooths and normalizes it over time, and then applies 16
classifiers frame by frame consisting of a filtering and quanti-
zation step, whose results are concatenated to a 32-bit hash.
This method has been developed for audio file identification
and is used by the MusicBrainz project [22] for metadata
tagging. It is not designed for noise and over-the-air appli-
cations.
All methods are exactly documented, except for Wang’s

which is only described conceptually but has an unofficial
open source library available [6]. For the Philips method,
all crucial parameters are specified in the original paper [15],
Echoprint and Chromaprint even offer official open source
libraries [18,25]. Although there are implementations avail-
able, Aurio reimplements all methods from scratch to allow
for stream-based processing of arbitrarily long input streams
with constant memory usage. It also provides the ability to
parameterize most variable settings through profiles, and
each method comes with at least a default profile. The
Echoprint and Chromaprint default profiles are compatible
with the official libraries and produce the same hash output.
For retrieval, Aurio provides an accompanying hash stor-

age for each fingerprinting method, backed by a hash table

http://naudio.codeplex.com/
http://www.mono-project.com/

or SQLite9. Generated hashes can be written to the stor-
age, which can then be queried for matches. Because Aurio
is optimized for media synchronization, the hash stores do
not just return a result telling if one track matches another,
but they return exact matching positions of hashes within
tracks. This essentially means that Aurio can be used to de-
termine which temporal position within one track matches
a temporal position within another track.
The accuracy of a match strongly depends on the granu-

larity of the hashes, e.g. the Philips method returns much
more accurate matches than Echoprint using the default set-
tings. Aurio implements various methods for calculating the
cross-correlation between stream segments, which can be
used to improve the accuracy up to the sample level [13]. It
also implements the common dynamic time warping method
[20], and the improved on-line time warping [5] method.
Given a single matching point, both can be used to cal-
culate a series of matching points over the whole runtime of
stream pairs, which effectively provides means for nonlinear
synchronization, and the detection of time drift [12], cuts
and drop-outs.

3.2 UI Widgets
To support building applications with graphical user in-

terfaces, Aurio.WaveControls offers a range of widgets com-
monly found in audio and video analysis and editing tools.
The spectrogram widget renders spectrograms and other 2D -
grams, e.g. chromagrams, with configurable color gradients.
The graph widget renders audio waves, windows, spectra
and other kinds of value series. The wave view widget is
the most elaborate control that can render arbitrarily long
audio tracks with scrolling and continuous zooming between
the whole track and single samples, and offers bitmap- and
vector-based rendering modes. Additional widgets include a
time scale, correlation meter, VU meter, and volume control
slider.

3.3 Demo Applications
Included with the library are multiple tools, test appli-

cations and unit tests that serve as examples on how the
library can be used. Among the interesting demos is a
benchmark of the fingerprinting methods, which runs a file
through all algorithms and prints the required computation
time. It is useful for optimizing and monitoring the impact
of changes in the algorithms and their many parameters.
Another is a multi-track media player where multiple files
can be mixed together and played back through a simple
GUI. A demo application for the Philips fingerprinting al-
gorithms allows the graphical inspection of the hash table
and calculated fingerprints. For the Shazam fingerprinting,
there is a demo that displays the constellation map on a
spectrogram.

4. AUDIOALIGN
AudioAlign10 is a Windows application shown in Figure 1,

jointly developed with and built upon the Aurio library. Its
main purpose is the (semi-)automatic synchronization of au-
dio and video recordings. Other use-cases include the eval-
uation of fingerprinting algorithms and their configuration
parameters, comparison of file sources, analysis of differences
9http://sqlite.org/

10https://github.com/protyposis/AudioAlign

Figure 1: AudioAlign main window, file menu
options, matching window, alignment graph, and
match detail window.

in distinct live performances of artists, automatic synchro-
nization of multiple audio tracks of different languages or
formats, the synchronization of different cover interpreta-
tions of a musical piece, and dubbing of vocal recordings. It
provides a simple multitrack timeline editor similar to com-
mon digital audio editors and video cutting tools, but does
not offer direct audio editing abilities. Instead, it serves
as a front end to Aurio’s fingerprinting and matching algo-
rithms, uses almost all of the core library’s functionality and
all the UI widgets, and is additionally designed to speed up
processing by parallelizing tasks over multiple CPU cores.
To synchronize multiple recordings of an event, they can

be dragged into the timeline or added through the menu.
Because Aurio supports many file formats, it can also load
videos downloaded from online video platforms like YouTube.
Once the timeline is populated, tracks can be shifted across
the scrollable and zoomable timeline which displays the au-
dio waveforms. This way, tracks can be synchronized manu-
ally by specifying synchronization points through the Match
& Align window. Playback can be started from any position
within the timeline, and controls attached to each track al-
low basic balancing and mixing of parallel tracks to inspect
their synchronization by listening. An instance of the ap-
plication with its timeline and all its settings makes up a
project that can be saved and loaded through the file menu.
When a desirable synchronization has been achieved, a mix-
down of the whole timeline or of separate selected tracks
can be rendered into audio files. The timeline can also be
exported to the Sony Vegas Pro video editor11, where pre-
synchronized video clips can easily be further processed, e.g.
to create a multicamera cut. Of course, the real value is
not the manual timeline adjustment but the available algo-
rithms. A populated timeline can be automatically synchro-
nized from the Match & Align window by first executing a
fingerprinting algorithm, after which the discovered match-
ing points are displayed on the timeline, and then carrying
out an alignment step where the matching points are fil-
tered by adjustable criteria and the tracks are temporally
adjusted on the timeline. Relations between tracks and their

11http://www.sonycreativesoftware.com/vegaspro

http://sqlite.org/
https://github.com/protyposis/AudioAlign
http://www.sonycreativesoftware.com/vegaspro

matching points can be inspected in the Alignment Graph
window that is also shown in Figure 1. Additional and more
fine-grained matching points can be obtained through the
dynamic time warping and cross-correlation options.
AudioAlign has already been presented as a demo [11] and

has been used to create a synchronization ground truth for
the Jiku Mobile Video Dataset [13]. Its sources are made
available together with Aurio to serve as a reference appli-
cation for the Aurio library.

5. LICENSE & PATENTS
Both Aurio and AudioAlign are available as open source

software under the GNU Affero General Public License Ver-
sion 3 [9]. Aurio contains methods protected by patents that
can legally only be used under certain conditions. In Europe,
these conditions are private use and research. For other uses,
all users are encouraged to clarify the legal situation before
using these methods. This particularly applies to the Philips
and Shazam fingerprinting methods which are protected in
many regions of the world [14, 24], and Echoprint which is
protected in the US [7].

6. REFERENCES
[1] A. Arzt. Score following with dynamic time warping.

Master’s thesis, Vienna University of Technology,
Vienna, Austria, 2008.

[2] M. Bartsch and G. Wakefield. Audio thumbnailing of
popular music using chroma-based representations.
Multimedia, IEEE Transactions on, 7(1):96–104, Feb
2005.

[3] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A
review of audio fingerprinting. Journal of VLSI signal
processing systems for signal, image and video
technology, 41(3):271–284, 2005.

[4] S. Dixon. An on-line time warping algorithm for
tracking musical performances. In Proceedings of the
19th international joint conference on Artificial
intelligence, IJCAI’05, pages 1727–1728, San
Francisco, CA, USA, 2005. Morgan Kaufmann
Publishers Inc.

[5] S. Dixon. An on-line time warping algorithm for
tracking musical performances. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI-05), pages 1727–1728, 2005.

[6] D. Ellis. Robust landmark-based audio fingerprinting.
Web resource: http://labrosa.ee.columbia.edu
/matlab/fingerprint/ , 2009. Accessed 2015-05-20.

[7] D. Ellis and B. Whitman. Musical fingerprinting based
on onset intervals. US Patent US20130139673, June 6
2013. Priority date Dec. 2 2011.

[8] D. Ellis, B. Whitman, and A. Porter. Echoprint - an
open music identification service. In Proceedings of the
12th International Society for Music Information
Retrieval Conference (ISMIR 2011), Miami, Florida,
2011.

[9] Free Software Foundation, Inc. GNU Affero General
Public License Version 3 (AGPLv3). Web resource:
http://www.gnu.org/licenses/agpl-3.0.txt,
Nov. 19 2007. Accessed 2015-05-20.

[10] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,

93(2):216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[11] M. Guggenberger, M. Lux, and L. Böszörmenyi.
Audioalign - synchronization of A/V-streams based on
audio data. In Multimedia (ISM), 2012 IEEE
International Symposium on, pages 382–383, 2012.

[12] M. Guggenberger, M. Lux, and L. Böszörmenyi. An
analysis of time drift in hand-held recording devices.
In MultiMedia Modeling, volume 8935 of Lecture Notes
in Computer Science, pages 203–213. Springer
International Publishing, 2015.

[13] M. Guggenberger, M. Lux, and L. Böszörmenyi. A
synchronization ground truth for the jiku mobile video
dataset. In MultiMedia Modeling, volume 8936 of
Lecture Notes in Computer Science, pages 87–98.
Springer International Publishing, 2015.

[14] J. Haitsma, A. Kalker, C. Baggen, and J. Oostveen.
Generating and matching hashes of multimedia
content. WIPO publication WO/2002/065782,
Aug. 22 2002. Priority date Feb. 2 2001.

[15] J. Haitsma and T. Kalker. A highly robust audio
fingerprinting system. In Proceedings of the 3rd
International Conference on Music Information
Retrieval (ISMIR), Paris, France, 2002.

[16] D. Jang, C. Yoo, S. Lee, S. Kim, and T. Kalker.
Pairwise boosted audio fingerprint. Information
Forensics and Security, IEEE Transactions on,
4(4):995–1004, Dec 2009.

[17] L. Kennedy and M. Naaman. Less talk, more rock:
Automated organization of community-contributed
collections of concert videos. In Proceedings of the 18th
International Conference on World Wide Web, WWW
’09, pages 311–320, New York, NY, USA, 2009. ACM.

[18] L. Lalinský. AcoustID Chromaprint. Web resource:
https://acoustid.org/chromaprint, 2011. Accessed:
2015-05-20.

[19] A. Llagostera Casanovas and A. Cavallaro.
Audio-visual events for multi-camera synchronization.
Multimedia Tools and Applications, pages 1–24, 2014.

[20] M. Müller. Dynamic time warping. In Information
Retrieval for Music and Motion, pages 69–84. Springer
Berlin Heidelberg, 2007.

[21] K. Seyerlehner, G. Widmer, T. Pohle, and M. Schedl.
Automatic music detection in television productions.
In Proceedings of the Int. Conf. on Digital Audio
Effects (DAFx-2007), 2007.

[22] A. Swartz. Musicbrainz: A semantic web service.
Intelligent Systems, IEEE, 17(1):76–77, Jan 2002.

[23] A. L.-C. Wang. An industrial strength audio search
algorithm. In Proceedings of the Fourth International
Conference on Music Information Retrieval (ISMIR
2003), pages 7–13, 2003.

[24] A. L.-C. Wang and J. O. Smith III. Method for search
in an audio database. WIPO publication
WO/2002/011123, Feb. 7 2002. Priority date Aug. 31
2000.

[25] B. Whitman, A. Porter, D. Ellis, et al. Echoprint
Codegen. Web resource:
http://echoprint.me/codegen, 2011. Accessed
2015-05-20.

http://labrosa.ee.columbia.edu/matlab/fingerprint/
http://labrosa.ee.columbia.edu/matlab/fingerprint/
http://www.gnu.org/licenses/agpl-3.0.txt
https://acoustid.org/chromaprint
http://echoprint.me/codegen

	Introduction
	Architecture
	Features
	Fingerprinting and Matching
	UI Widgets
	Demo Applications

	AudioAlign
	License & Patents
	References

